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S ervice level agreements (SLAs) are widely adopted performance-based contracts in operations management practice,
and fill rate is the most common performance metric among all the measurements in SLAs. Traditional procedures

characterizing the order-up-to level satisfying a specified fill rate implicitly assume an infinite performance review horizon.
However, in practice, inventory managers are liable to maintain and report fill rates over a finite performance review hori-
zon. This horizon discrepancy leads to deviation between the target fill rate and actual achieved fill rate. In this study, we
first examine the behavior of the fill rate distribution over a finite horizon with positive lead time. We analytically prove
that the expected fill rate assuming an infinite performance review horizon exceeds the expected fill rate assuming a finite
performance review horizon, implying that there exists some inventory “waste” (i.e., overstocking) when the traditional
procedure is used. Based on this observation and the complexity of the problem, we propose a simulation-based algo-
rithm to reduce excess inventory while maintaining the contractual target fill rate. When the lead time is significant rela-
tive to the length of the contract horizon, we show that the improvement in the inventory system can be over 5%.
Further, we extend our basic setting to incorporate the penalty for failing to meet a target, and show how one can solve
large-scale problems via stochastic approximation. The primary managerial implication of our study is that ignoring the
performance review horizon in an SLA will cause overstocking, especially when the lead time is large.
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1. Introduction

“Inventory, a fundamental evil, declines in value
by 1% to 2% a week in normal times, faster in
tough times like the present. You want to man-
age it like you’re in the dairy business. If it gets
past its freshness date, you have a problem.”

Tim Cook, CEO of Apple Inc.

Inventory is one of the largest investments made by
most businesses. It is also well recognized that inven-
tory management is one of the most challenging busi-
ness functions. According to a monthly survey by the

U.S. Census Bureau,1 in November 2016, the value of
manufacturers’ and trade inventories (including
retailers and merchant wholesalers) was estimated at
$1827.5 billion, which accounts for more than 10% of
the annual gross domestic product (GDP) of the
United States. Against this backdrop, even slight
improvements in inventory management will result
in dramatic savings due to the size of the gross vol-
ume. In this study, we first demonstrate a common
problem that afflicts service level agreements (SLAs),
then propose an innovative solution which can be
easily implemented by a wide range of practitioners
to reduce inventory levels while achieving target
service levels.
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Fill rate is defined as the average fraction of
demand that is immediately satisfied from stock. An
earlier noteworthy study has shown that using
order-up-to level determined by current commercial
software/algorithms will lead to substantially higher
achieved fill rates as compared to the fill rates speci-
fied by contract over finite performance review hori-
zon with zero-lead time (Thomas 2005). This is to
say that the current formula used in textbooks and
prevalent commercial software2 results in excess
inventory, which translates to unnecessarily high
inventory holding costs. The root cause of this over-
estimation is that the traditional formula always
assumes the performance review horizon to be in-
finite, whereas in practice the SLA requires the sup-
plier to meet the target fill rate over a specific, finite,
review period (e.g., a month, week or quarter). Con-
sidering the enormous gross inventory levels
($1827.5 billion in the United States), the possible
savings from improving the inventory system are
substantial. In Table 1 below, we give an example of
our results. When inventory managers check the fill
rate biweekly, on average they actually achieve a
92.73% fill rate, while the contractual target fill rate
is only 90%. Now consider what happens in terms of
the order-up-to level. This 2.73% difference translates
into overstocking by 4.04%.
Despite several research papers having identified

and described this interesting overestimation phe-
nomenon from different perspectives (Banerjee and
Paul 2005, Chen et al. 2003, Thomas 2005), little has
been published to tackle this very important but over-
looked issue. One possible reason that previous stud-
ies have not resolved this overestimation issue is the
fact that the fill rate is a random variable over a finite
review horizon, and as a result, the problem of deter-
mining stock levels that deliver a given fill rate is ana-
lytically intractable. In this research, we study the fill
rate behavior in the setting of order-up-to policy with
a finite review horizon and positive lead time. More
importantly, we provide a practical tool that can be
readily implemented by inventory managers and/or
commercial software packages. To achieve this, we

first prove structural results for expected fill rate over
a finite horizon that lead to upper and lower bounds.
We use these bounds in a simulation-based optimiza-
tion algorithm to solve the problem. Simulation-based
optimization is a viable tool when facing analytically
intractable models like the one presented in this study
(Fu et al. 2005). Another explanation for past neglect
of this overestimation problem may be due to the
tactic of using overstock to avoid invoking the penalty
clause in the SLA. However, we show that as long as
the penalty rate is moderate, the firm still faces a seri-
ous overstocking problem because of the variability
generated by the probability distribution of fill rate
over a finite horizon.
The problem formulation, as we demonstrate later

in this study, requires the computation of the expec-
tation of a rational function of dependent random
variables, which is a formidable analytical problem.
The problem is further exacerbated by the under-
lying distributions being high dimensional and non-
factorizable. The only recourse is to compute the
expectation through Monte-Carlo methods. We
propose two such methods, a vanilla technique
followed by a more efficient stochastic optimization.
While results obtained are qualitatively similar in
the two cases, the second method demonstrates fas-
ter convergence.
The operations management literature has been

rather casual about tying the formula for expected fill
rate to an infinite horizon, while in fact applying it
under finite horizons of various lengths. Our paper
subjects the implicit assumption that this abuse is
innocuous to close scrutiny, and finds that it is not as
innocent as has been tacitly assumed in the literature.
In essence, we find that ignoring lead time and using
an infinite horizon formula in a finite horizon con-
text together conspire to inflate inventory levels
significantly.
To summarize, there are several unique contribu-

tions of this study to the academic literature as well
as to practice. Firstly, we investigate how the perfor-
mance review horizon, lead time, and demand dis-
tribution affect the achieved fill rate in a finite
horizon. Previous studies (Banerjee and Paul 2005,
Chen et al. 2003, Thomas 2005, Zhong et al. 2017)
have focused only on inventory systems with zero
lead time. In this study, we incorporate lead time
into our model, analyze it theoretically, and show
empirically that lead time worsens the overstocking
problem in the sense that the higher the lead time,
the higher the amount of overstocking. Secondly, we
analytically prove that the achieved fill rate in the
finite horizon is higher than the target fill rate,
which provides the theoretical foundation of our
proposed algorithms. Note that this result applies
when the initial on-hand inventory is a random

Table 1 Illustration of the Results when Target Fill Rate Equals 90%

Achieved
expected
fill rate Order-up-to level, s

Traditional formula 92.73% 23.9157 (0.00%)
Simulation-based optimization 90.01% 22.9493 (�4.04%)

Notes. This result is based on the scenario when performance review
horizon T = 15 (i.e., roughly biweekly), lead time L = 3, demand is
distributed as Erlang (5,1) in each time period and the initial on-hand
inventory is at the order-up-to level. The percentage in parentheses
represents the improvement of order-up-to level.
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variable following the steady-state on-hand inven-
tory distribution, and also when the initial on-hand
inventory is equal to the order-up-to level. Further,
we find that the state of the initial inventory system
is critical to the magnitude of the overstocking
problem. The overstocking problem is much more
serious for the inventory system when the initial on-
hand inventory is equal to the order-up-to level.
Finally, we develop a practical tool for inventory
managers to set up the optimal inventory level
needed to achieve a contractually specified fill rate.
Such practical tools and software could help firms in
a wide range of industries achieve inventory cost
savings while simultaneously providing customers
the contractually committed service level.
The rest of the study is organized as follows: In the

next section, we review the related literature. Section 3
describes the theoretical setting and discusses the
behavior of the fill rate random variable with positive
lead time. In section 4, we first prove structural prop-
erties of average fill rate over a finite horizon and then
design a simulation-based algorithm based in part on
the properties established earlier. In section 5, we con-
duct extensive numerical analysis to compare against
the traditional formula and provide managerial impli-
cations. In section 6, we extend our basic model to
incorporate the penalty into consideration and dis-
cuss the performance of an alternative algorithm. The
study concludes with a summary and avenues for
future research.

2. Literature Review

An SLA is a type of performance-based contract in
which the supplier commits to achieving a specified
service level over a number of time periods defined
as the performance review horizon (Chen and Tho-
mas 2015). Service level metrics can be classified into
the following three categories: a-service-level, b-
service-level, and c-service-level. a-service-level,
commonly known as Type 1 service level, is defined
as the fraction of cycles in which there is no stockout.
Ready rate, a variation of a-service-level, measures
the probability that arriving customer orders will be
completely delivered from stock. b-service-level, the
focus of the current study, also called Type 2 service
level or fill rate, denotes the expected fraction of
demand served immediately from stock. Note that
the key difference between Type 1 and Type 2 ser-
vice level hinges on whether or not to take the mag-
nitude of stock-out into account. Specifically, Type 1
service level is an event-oriented performance crite-
rion which only counts the number and ignores the
magnitude of stock-out events, while Type 2 service
level is a quantity-oriented performance measure
which captures the magnitude of stock-outs. We

focus on fill rate in this study because it is the metric
that most managers associate with service level
(Nahmias and Olsen 2015). c-service-level incorpo-
rates expected cumulative backorders per time
period into the service level calculation, which cap-
tures the duration of the stockout. Schneider (1981)
has provided a comprehensive early review of these
three service measurements under different inven-
tory policies. Silver et al. (1998) present an insightful
discussion of the different service level metrics men-
tioned above.
In the operations management literature and text-

books, fill rate is defined as the average fraction of
demand that can be immediately fulfilled from on-
hand inventory (Axsater 2006, Cachon and Terwiesch
2008, Song 1998). Methods presented in textbooks and
used in many commercial software packages often
calculate fill rate as expected demand satisfied per
cycle divided by expected demand per cycle. Note
that this formula is equivalent to one minus the ratio
of expected back-order per cycle to expected demand
per cycle. Nevertheless, Chen et al. (2003) note that
this formula only holds when the demand is station-
ary and serially independent over an infinite horizon.
Assuming zero lead time, Chen et al. (2003) also show
that with a common fixed stocking quantity, the
expected achieved fill rate over a finite performance
review horizon is always greater than the expected fill
rate over an infinite performance review horizon. In a
sequel, Banerjee and Paul (2005) extend the work of
Chen et al. (2003)’s work by proving that the expected
fill rate is monotonically decreasing in the number of
review periods. Another noteworthy study in this
stream of literature is Thomas (2005), which exten-
sively studies how the achieved fill rate behaves over
a range of different demand distributions and review
horizons through Monte Carlo simulation. This study
not only consolidates the earlier theoretical findings
but also generates managerial implications. Katok
et al. (2008) further explore this issue through a con-
trolled lab experiment and finds that applying a
longer performance review period is more effective in
terms of inducing service improvements. In essence,
the aforementioned works all suggest that the current
methods lead to a higher inventory level than neces-
sary to achieve a specified fill rate agreement over a
finite review horizon. It is also worth noting that these
papers share the common underlying assumption of
zero lead time, which significantly simplifies the tech-
nical analysis.
There are several studies that investigate the fill

rate in periodic review systems with positive lead
time. Johnson et al. (1995) examine the problem of
estimating the fill rate. They not only provide the
details of the derivation of the classical fill rate for-
mula but also propose an exact fill rate expression
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under the normally distributed demand. Sobel
(2004) derives the formulas for the fill rate under
general demand distributions for both single-stage
and multiple-stage supply chain systems that use
base-stock policies. Zhang and Zhang (2007), Zhang
et al. (2010), Zhang (2012) extend Sobel’s (2004) work
to the general periodic review policy in which the
inventory position is reviewed once every R periods
for single-stage and two-stage inventory systems.
Note that if R = 1, the general periodic review policy
is equivalent to the traditional periodic-review order
up to policy. In a follow-up study, Teunter (2009)
derived the same expression for the fill rate in Zhang
and Zhang (2007) using an alternative approach and
generalized to (R, Q) policies. Guijarro et al. (2012)
develop a general method to compute the fill rate for
discrete demand distribution under the setting of lost
sales. Paul et al. (2015) have studied the inventory
planning problem for modular products with indi-
vidual and aggregate fill rate constraints. The focus
of the aforementioned works is to characterize the fill
rate in a single or multistage inventory system over
an infinite review horizon, while the review of the
inventory system is often conducted in a finite per-
formance horizon.
Thus, there is a clear gap in the extant literature; fill

rate over a finite horizon with positive lead time,
which is what transpires in practice, has not been well
studied. In this study, we first look into the impact of
the interaction of positive lead time and finite review
horizon. After observing the behavior of the fill rate
distribution, we analytically show that expected fill
rate over a finite review horizon is always greater
than the expected fill rate over an infinite review hori-
zon, which complements the previous literature
(Chen et al. 2003, Thomas 2005). Correspondingly, we
develop a simulation-based optimization algorithm to
help inventory managers set up the optimal inventory
level, which is crucial but overlooked by the previous
literature. Simulation-based optimization has been
developed rapidly in the past few years due to the
advances in computing power and memory. This
approach provides solutions to many important prac-
tical problems previously beyond reach. A number of
applications have been published in the literature.
Glasserman and Tayur (1995) develop a simulation-
based method to estimate the sensitivities of inven-
tory costs with respect to the policy parameters in a
multiechelon inventory systems. Kapuscinski and
Tayur (1998) study a capacitated production inven-
tory system. Spieckermann et al. (2000) apply simula-
tion optimization to optimize an automobile
manufacturing production system. Readers interested
in simulation optimization may refer to Fu et al.
(2005) for a comprehensive review of the current
literature.

3. Problem Definition and Fill Rate
Distribution

In this section, we first introduce the notations and
settings of our study, and then make observations on
the distribution of fill rate through the lens of Monte
Carlo simulation studies.

3.1. Problem Setting
We study fill rate over a finite horizon in a periodic
review model with positive lead time. Although the
widespread implementation of sophisticated informa-
tion systems makes continuous review systems
practical, replenishment goods are shipped only peri-
odically in many settings. Therefore, the shipment
dates determine the points in time at which orders are
placed (Sobel 2004). It is well known that an order-
up-to policy (i.e., base stock policy) will minimize
holding and shortage costs when the horizon is infi-
nite (Zipkin 2000), but such a policy is not necessarily
optimal over a finite horizon under a service-level
agreement. We restrict our space of inventory policies
to the space of stationary, order-up-to policies,
since these policies are commonly used and easy to
implement.
Let OHt represent the on-hand inventory level at

the start of period t. Dt denotes the demand random
variable in period t; OOt denotes the on-order inven-
tory of period t, BOt denotes total back-orders at the
end period t, and INt denotes net inventory, which is
defined as the difference between on-hand inventory
and back-orders. Depending on the scenario, the ini-
tial on-hand inventory level, OH1 can take the form of
either the order-up-to level, OH1 = s (i.e., initial state
hereafter) or OH1 ¼ ðs � R0

i¼ 1�LDiÞþ (i.e., steady-
state hereafter).3 On the one hand, if the inventory
manager is dealing with a relatively new product or a
newly signed contract, then it is reasonable to assume
that the on-hand inventory level starts at the order-
up-to level. On the other hand, if the inventory man-
ager is facing a recurring fill rate contact, then it is
appropriate to assume that the initial on-hand inven-
tory is equal to the steady-state on-hand inventory
level. For convenience, we refer to the fill rate under
the first scenario as the initial state fill rate and the
latter as the steady-state fill rate for the remainder of
the paper.
The chronology of events is as follows. At the

beginning of period t, the replenishment order placed
in period t � L � 1 (where lead time L is a non-nega-
tive integer) arrives, then random demand is
observed and satisfied from on-hand inventory. If
demand exceeds on-hand inventory, excess demand
is backlogged. Finally, a replenishment order is sub-
mitted to bring the inventory position (i.e., total
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quantity on-order + net inventory) back up to the
order-up-to level s. Note that the replenishment order
quantity always equals the immediately preceding
demand. As a result, we can rewrite OOt as R

t�1
i¼t�LDi.

Let (x)+ denote max(x, 0). According to the results on
page 180 of Zipkin (2000), we have

OHt ¼ ðINtÞþ ¼ ðs�OOtÞþ ¼ ðs�
Xt�1

i¼t�L
DiÞþ: ð1Þ

The fill rate random variable with review horizon T
and lead time L, bT,L(s), is defined as the average frac-
tion of demand that can be satisfied from stock imme-
diately. Hence,

bT;LðsÞ � E

PT
i¼1 minðOHi;DiÞPT

i¼1 Di

" #
ð2Þ

Sobel (2004) has derived the analytical solution to
Equation (2) when the performance review horizon is
infinite (i.e., T ? ∞) for arbitrary demand distribu-
tions. The following formula gives us the benchmark
to compare against when the performance review
horizon is finite.

b1;LðsÞ ¼ 1� E½DLþ1 � ðs�PL
i¼1 DiÞþ�þ

l

¼
Z s

0

½GðLÞðbÞ � GðLþ1ÞðbÞ�db=l
ð3Þ

where G(�) denotes the demand distribution function
with finite expectation l and G(k)(�) stands for the k-
fold convolution of G(�). Based on formula (3), we
can derive the closed-form formula for average fill
rate for arbitrary demand distribution. If lead time
L = 0, formula (3) corresponds to the well-known
result used to define fill rate in textbooks; that is,
the fill rate equals one minus the average fraction of
backordered demand over the expected demand in
one period. For expositional purposes, we derive
the closed-form formula for Gamma distributed
demand. Let the Dt’s be independent and identically
distributed (i.i.d.) random variables drawn from a
Gamma distribution with shape parameters c and
rate k, so that the probability density function

is given by gðxÞ ¼ �c

CðcÞ x
c�1e��x. Also, the L-fold

convolution of Gamma distribution is GðLÞðxÞ ¼
1� e��xRLc�1

j¼ 0
ð�xÞj
j! . As a result,

b1;LðsÞ ¼
XðLþ1Þcþ1

Lcþ1

PðCðj; �Þ� sÞ
c

ð4Þ

Having described the inventory system and
derived the fill rate formula with a positive lead time,4

we next explore the behavior of the fill rate distribu-
tion in a finite performance review horizon. We

characterize the order-up-to level s from Equation (4)
and use it as the benchmark to study the fill rate in a
finite review horizon by Equation (2).

3.2. Fill Rate Distribution
We now examine how the review horizon, lead time,
and different demand distributions affect the behav-
ior of the random variable bT,L. This will not only
reveal the pitfalls of the current method to determine
the order-up-to level with fill rate constraint, but also
facilitate the subsequent algorithm development. As
we pointed out earlier, analytically characterizing bT,L
appears to be an intractable task when the perfor-
mance review horizon T is finite and the lead time L is
positive. Instead, motivated by Thomas (2005), we
estimate the distribution of bT,L, using Monte Carlo
simulation. Our parameters represent a wide range of
plausible values, chosen to represent realistic scenar-
ios from current industry practice. For example, T = 4
and L = 1 stands for the situation where the inventory
manager makes weekly stocking decisions with a
monthly performance review, and the time interval
between placing and receiving an order is one week.
We have varied different distributions (i.e., Erlang,
Normal, and Poisson) with different parameter set-
tings of our numerical analysis and find that our
results are robust to a variety of settings.5 Further, the
numerical results for the steady-state scenario are
qualitatively similar to those for the initial state sce-
nario. Without loss of generality, we next illustrate
the details when the demand is Erlang distributed for
the initial state scenario.
We itemize the steps involved in conducting the

simulation study,

1. Firstly, we assume that demand is Erlang dis-
tributed and set the target fill rate b = 80%,
85%, 90%, and 95%. Specifically, the shape
parameter of the Erlang distribution is set at 3
with a rate parameter equal to 1. We also vary
the lead time L ranging over the values 0, 1, 2,
and 3, respectively.

2. Secondly, we characterize the order-up-to level
s based on the specified long-run fill rate by
solving Equation (4).

3. Thirdly, we generate random variables and
compute empirical fill-rate for different review
horizons T based on the inventory dynamics
and fill rate definition in Equation (2). Follow-
ing Thomas (2005), we replicate each experi-
ment 107 times to get an accurate estimation of
the fill rate distribution in the finite perfor-
mance review horizon.

We summarize the highlights of our simulation
study in Figure 1. Figure 1 shows the average of the
achieved fill rate with various long-run fill rate

Tan, Paul, Deng, and Wei: Target Fill Rate over a Finite Horizon
Production and Operations Management 26(11), pp. 1971–1988, © 2017 Production and Operations Management Society 1975



targets. By comparing the four sub-figures in Figure 1,
we first find that the expected achieved fill rate is
always above the long-run fill rate target and gets clo-
ser to the target when the performance review hori-
zon T becomes larger. Further, we observe that the
overestimation is more severe when the target fill rate
is low and/or the performance review horizon is
short. For example, if an inventory manager employs
the traditional fill rate formula to maintain an 80% fill
rate in a daily stocking decision with weekly perfor-
mance review (i.e., T = 10), what she/he actually
achieves is a fill rate of 88% when the lead time L is
three days. Another very important observation from
Figure 1 is that the achieved fill rate varies systemati-
cally with lead time L. This observation is new to the
literature, as previous studies have not incorporated
the lead time (Banerjee and Paul 2005, Thomas 2005)
in the fill rate over the finite review horizon. From the
figure, we observe that the higher the lead time is, the

higher the expected achieved fill rate will be, which
suggests a more severe overstocking problem. To fur-
ther examine the impact of lead time on fill rate distri-
bution, we conduct further analysis to isolate the lead
time by allowing the lead time to vary while fixing
the other parameters.
We plot the boxplot of the fill rate distribution with

different lead times (L = 0, 1, 2, and 3) and different
target fill rate while keeping all other variables fixed
in Figure 2.
Immediately, we notice that the fill rate distribution

is very sensitive to the change in lead time. A close
examination of the boxplots shows that when the lead
time is relatively large, the median and upper quartile
of the fill rate distribution both increase, while the
lower quartile and the minimum both decrease as
lead time increases; as a result, the fill rate distribu-
tion as a whole spreads out as lead time increases.
This suggests that both the magnitude and the
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viewed at wileyonlinelibrary.com]
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variability of the fill rate distribution increases as lead
time increases. Thus, we conclude that the overesti-
mation problem (i.e., the achieved fill rate is higher
than the target fill rate) is more severe than previously
thought as the lead time plays a significant role in
aggravating this problem.

4. Theoretical Results and a Simulation-
based Optimization Algorithm

In this section, we show how to characterize
the order-up-to level subject to a target fill rate. The
underlying mechanism is as follows. Because of the
monotonicity of the expected fill rate in the order-up-
to level, we are able to search the optimal order-up-to
level from the lower bound to the upper bound. Due
to the complexity of the fill rate distribution behavior,
we resort to simulation to calculate the expected
achieved fill rate.

In the next sub-section, we prove that given an
order-up-to level, s, the achieved fill rate in a finite
horizon is greater than or equal to the fill rate in an
infinite review horizon for both steady state and ini-
tial state fill rate. This theoretical result not only con-
solidates our finding in the previous section, but also
establishes the upper bound of the search region.
Essentially, we prove that this upper bound is equal
to the order-up-to level characterized from the tradi-
tional formula assuming the review horizon is
infinite.

4.1. Theoretical Results
Here, we prove our main structural result
bT;LðsÞ � b1;LðsÞ. The immediate implication of this
result is as follows: If we use the optimal order-up-to
level assuming an infinite horizon, then our actual
achieved fill rate will become higher than the target
level. Thus, this provides us an upper bound of our
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Figure 2 Boxplot of Achieved Fill Rate of Meeting a 80%, 85%, 90%, and 95% Target Fill Rate with Erlang Distribution (3,1) and Performance
Review Horizon T = 40 [Color figure can be viewed at wileyonlinelibrary.com]
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search region in the later algorithm. Note that the dif-
ficulty in proving this result stems from the positive
lead time, which was assumed to be zero in the previ-
ous literature (Banerjee and Paul 2005, Chen et al.
2003). Relaxing the assumption of zero lead time
requires a novel approach to proving the result, as we
will show.
Let {Di: i = 1, 2, . . .} be independent and identi-

cally distributed (i.i.d.) non-negative demand random
variables. Following Chen et al. (2003) and without
loss of generality, we assume E[Di] = 1. We focus on
the discussion of the realistic case where T ≥ L + 1;
the proof for the case T ≤ L follows along the same
lines.
There are two different ways of defining fill rate

over a multiple-period horizon, depending on
whether the initial on-hand inventory level is
assumed to have attained a steady-state distribution
or not. We will prove that the result bT;LðsÞ � b1;LðsÞ
holds true, using either definition. On the one hand,
the steady-state definition is appropriate when the
horizon over which fill rate is measured consists of
periods L + 1 through L + T; periods 1 through L are
not accounted for in the measurement of average fill
rate. Alternatively, it applies when we transition
from one T-period horizon to another T-period hori-
zon with the same demand distributions; in this case,
the leftover inventory from the first horizon serves
as the starting on-hand inventory for the second
horizon. On the other hand, the initial state defini-
tion applies when average fill rate is measured over
periods 1 though T; the system is started “cold” with
an on-hand inventory level equal to the order-up-to
level. The initial state definition of average fill rate
accommodates a transient effect, and this may better
capture the true fill rate when the inventory system
begins operations from scratch. For instance, con-
sider a situation in which a firm plans to sell a pro-
duct over a horizon of 3 months with weekly
replenishments; the firm enters into a service-level
agreement for this selling season. That is to say that
T = 12 weeks and L = 1 week. In the next selling sea-
son of 3 months, demand conditions may change
and the product itself may be upgraded. The firm
signs a fresh SLA for the next 3 months. In this
example, we suggest that the initial state definition
of fill rate is more appropriate than the steady-state
definition.
Initial state case: We now commence the proof of

the theorem bT;LðsÞ � b1;LðsÞ for the initial state case.
We first prove the result using the initial state defini-
tion of average fill rate, after which we prove it using
the steady-state definition. We remark that the proof
using the steady-state definition is similar to the first
proof, but requires some finessing; We provide com-
plete details of both proofs.

From the initial state definition of fill rate, we have

bT;LðsÞ ¼ E
min D1; sð ÞPT

i¼1 Di

" #

þ
XL
k¼2

E

min Dk; s�Pk�1
i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775

þ
XT
k¼Lþ1

E

min Dk; s�PL
i¼1 Dk�i

� �þ� �
PT

i¼1 Di

2
664

3
775

¼ E
min D1; sð ÞPT

i¼1 Di

" #

þ
XL
k¼2

E

min Dk; s�Pk�1
i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775

þ T � Lð ÞE
min DLþ1; s�PL

i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775;
ð5Þ

where the second equation holds because Di are
i.i.d. for i = 1, 2, . . ., T.
The following lemma provides the average fill rate

under infinite planning horizon.

LEMMA 1. When E[Di] = 1, we have

b1;LðsÞ :¼ lim
T!þ1

bT;LðsÞ

¼ E min DLþ1; s�
XL
i¼1

Di

 !þ !" #
: ð6Þ

PROOF. The proof is given in Online Appendix S1.h

In the following theorem, we show that for a given
based stock level s, the average fill rate under the
finite review horizon is no lower than that under the
infinite time horizon. Accordingly, to reach a certain
fill rate level b, the based stock level under the finite
time horizon sT,L(b) is no higher than that under the
infinite time horizon s1;LðbÞ.

THEOREM 1. bT;LðsÞ � b1;LðsÞ.

Without loss of generality, we assume E[Di] = 1 for
i = 1, 2, . . .. Before proceeding to the proof of the the-
orem, we first state several lemmas that we shall use
in the proof.
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LEMMA 2. When E[Di] = 1 for i = 1, 2, . . ., there
exists a vL > 0 such that

E
1

zþPT
i¼Lþ2 Di

� 1

T

 !" # [ 0 for 0� z\vL
¼ 0 for z ¼ vL
\0 for z[ vL.

8<
: ð7Þ

PROOF. The proof is given in Online Appendix S2.h

Define

hLðsÞ :¼E
1PT

i¼1Di

� 1

T

 !
min DLþ1; s�

XL
i¼1

Di

 !þ !" #
:

ð8Þ

LEMMA 3. Suppose Di has absolutely continuous distri-
bution with density function f(y) > 0 for all y > 0 and
E[Di] = 1 for i = 1, 2, . . ., we have

hLðsÞ� 0 for s� vL; ð9Þ

where vL is defined in Lemma 2.

PROOF. The proof is given in Online Appendix S3.h

Define

gðs; xÞ

¼ E
1

xþDLþ1 þ
PT

i¼Lþ2 Di

� 1

T

 !
min DLþ1; s� xð Þ

" #
:

ð10Þ

We have

g s; xð Þ ¼
Z s�x

0

E
1

xþ yþPT
i¼Lþ2 Di

� 1

T

 !
y

" #
f yð Þdy

þ
Z 1

s�x
E

1

xþ yþPT
i¼Lþ2 Di

� 1

T

 !
s� xð Þ

" #
f yð Þdy:

ð11Þ

In the following lemma, we establish some proper-
ties of g(s, x) when s = vL, where vL is defined in
Lemma 2.

LEMMA 4. Suppose Di has absolutely continuous distri-
bution with density function f(y) > 0 for all y > 0 and
E[Di] = 1 for i = 1, 2, . . ., there exists a uL 2 ð0; vLÞ
such that

gðvL; xÞ
[ 0 for 0� x\uL
¼ 0 for x ¼ uL
\0 for uL\x\vL
¼ 0 for x ¼ vL

8>><
>>: ; ð12Þ

where vL is defined in Lemma 2.

PROOF. The proof is given in Online Appendix S4.h

LEMMA 5. Suppose Di has absolutely continuous distri-
bution with density function f(y) > 0 for all y > 0 and
E[Di] = 1 for i = 1, 2, . . ., we have

hLðsÞ� 0 for 0� s\vL; ð13Þ

where vL is defined in Lemma 2.

PROOF. The proof is given in Online Appendix S5.h

We now proceed to the proof of the theorem.

PROOF OF THEOREM 1. Since Di are non-negative and
i.i.d. for i = 1, 2, . . ., T, we have

E
min D1; sð ÞPT

i¼1 Di

" #
¼ E

min D2; sð ÞPT
i¼1 Di

" #

�E
min D2; s�D1ð Þþ� �

PT
i¼1 Di

" #

� . . .

�E

min DLþ1; s�PL
i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775:

Hence, based on Equation (5), we have

bT;LðsÞ�TE

min DLþ1; s�PL
i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775: ð14Þ

Thus, in order to prove bT;LðsÞ� b1;LðsÞ, based on
Equations (6) and (14), it suffices to prove

TE

min DLþ1; s�PL
i¼1 Di

� �þ� �
PT

i¼1 Di

2
664

3
775

�E min DLþ1; s�
XL
i¼1

Di

 !þ !" #
:

ð15Þ

h
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Based on Equation (8), we have hLðsÞ ¼ E½ð 1
RT
i¼1Di

� 1
TÞ

�minðDLþ1; ðs� RL
i¼1DiÞþÞ�. Hence, it suffices to prove

hLðsÞ� 0 for all s� 0: ð16Þ
We first assume that Di has absolutely continuous

distribution with density function f(y) > 0 for all
y > 0. Under this assumption, hL(s) ≥ 0 for s ≥ vL is
proved in Lemma 3 and hL(s) ≥ 0 for 0 ≤ s < vL is
proved in Lemma 5. Thus, we have hL(s) ≥ 0 for all
s ≥ 0 and our conclusion holds.
Next, we discuss the general case where the distri-

bution of Di might not be absolutely continuous. In

this case, let D�
i ¼ Diþd�i

1þd for i = 1,2,. . ., where d is a

positive constant, and ei are i.i.d. exponential random
variables with mean 1 and are independent of Di.
Hence, D�

i are absolutely continuous random vari-
ables with positive density functions and E½D�

i � ¼ 1,
and so the above proof applies to D�

i . Letting d ? 0,
the claim holds for the general case.
Steady-state case: Next, we prove that the previous

theorem also holds under the steady-state definition
of fill rate. The focal difference between the steady-
state and initial state definition of fill rate lies in the
initial on-hand inventory level. Let D�L+1, D�L+2, . . .,
D�2, D�1, D0 be i.i.d. copies of Di. Under the steady
state, the average fill rate over periods 1, 2, . . ., T is

~bT;LðsÞ¼
XT
k¼1

E

min Dk; s�Pk�1
i¼k�LDi

� �þ� �
PT

i¼1Di

2
664

3
775

¼
XL
k¼1

E

min Dk; s�Pk�1
i¼k�LDi

� �þ� �
PT

i¼1Di

2
664

3
775

þ
XT
k¼Lþ1

E

min Dk; s�Pk�1
i¼k�LDi

� �þ� �
PT

i¼1Di

2
664

3
775

¼
XL
k¼1

E

min Dk; s�P0
i¼k�LDi�

Pk�1
i¼1 Di

� �þ� �
PT

i¼1Di

2
664

3
775

þ T�Lð ÞE
min DLþ1; s�PL

i¼1Di

� �þ� �
PT

i¼1Di

2
664

3
775;
ð17Þ

where the second equation holds because Di are
i.i.d. for i = 1, 2, . . ., T. These terms involve random
variables Dt from the previous history t = . . ., �3,
�2, �1. It is straightforward to see that this is

equivalent to measuring the average fill rate over
periods L through L + T and ignoring periods 1
through L for measurement.

LEMMA 6. When E[Di] = 1, we have

~b1;LðsÞ :¼ lim
T!þ1

~bT;LðsÞ

¼ E min DLþ1; s�
XL
i¼1

Di

 !þ !" #
¼ b1;LðsÞ:

ð18Þ

PROOF. The proof is similar to that of Lemma 1 and
so is omitted. The crucial ingredient of the proof is
the dominated convergence theorem. h

THEOREM 2. ~bT;LðsÞ � ~b1;LðsÞ.

PROOF. The proof is given in Online Appendix S6.h

From the proof of Theorems 1 and 1, it is straight
forward to show that our results also hold when the
fill rate is counted over periods [t, t�1 + T] for
t = 2, 3, L. The detailed discussion is provided in
Online Appendix S7.
Based on Theorems 1 and 2, we prove that given an

order-up-to level, s, the achieved fill rate in a finite
horizon is greater than or equal to the fill rate in an in
finite review horizon for both steady-state and initial
state fill rate. This theoretical result defines the upper
bound of the search region of the proposed algorithm
in section 4.2. That is, we prove that this upper bound
is equal to the order-up-to level characterized from
the traditional formula assuming the review horizon
is infinite. Next we prove the lower bound of the
search region of the order-up-to level.
Here we provide an upper bound for both ~bT;LðsÞ

and bT,L(s), which we use to provide the lower bound
of our search region of the order-up-to level.

THEOREM 3. ~bT;LðsÞ � bT;LðsÞ � b1;0ðsÞ.

PROOF. The proof is given in Online Appendix S8.
Based on Theorem 3, it is straightforward to observe
that the order-up-to level s in the b1,0(s) can be used
to provide a lower bound in searching the optimal
order-up-to level, s. h

4.2. A Simulation-based Optimization Algorithm
Based on our previous theoretical results, we present
a simulation based optimization algorithm to search
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for the optimal order-up-to quantity and characterize
the convergence properties of the algorithm. To facili-
tate the development, we introduce some notations.
First of all, for simplicity we omit the subscript L and

use bT,L and bT interchangeably. Let ZN ¼ fZn :
n ¼ 1; 2; . . .; Ng be the i.i.d. samples of the random

demand sequence, where each Zn ¼ hDðnÞ
1 ; D

ðnÞ
2 ; . . .;

D
ðnÞ
T i is the i-th sample of demand sequence in T peri-

ods. For each period t: 1 ≤ t ≤ T, let OH
ðnÞ
t ðsÞ be the on

hand inventory, BO
ðnÞ
t ðsÞ be the back order level and

OO
ðnÞ
t ðsÞ be the on order inventory, associated with

the order-up-to level s, respectively. b̂ZT indicates the
empirical fill rate computed from sample path Z, and

we let b̂ðnÞT be short for b̂Zn

T . Replacing the population
mean with the sample mean, we seek a solution of the
approximated problem as follows

1

N

XN
n¼1

b̂ðnÞT ðsÞ ¼ b: ð19Þ

To begin with, we present some useful properties
of fill rate in the following proposition.

PROPOSITION 1. Let Z = {〈D1, D2, . . ., DT〉} be any

random demand sequence. b̂ðZÞT ðsÞ is the empirical fill rate
computed from the sequence Z. For each t = 1, 2, . . ., T;
OHt is a monotonically increasing function of s; BOt is a
monotonically decreasing function of s. As a result,

b̂ðZÞT ðsÞ is a monotonically increasing function of s.

PROOF. From the definition in the previous section,
we can rewrite BOt(s) = max(Dt�1 � Dt�L�1 +
OOt�1 � s, 0). The monotonicity of BOt, OHt is an
immediate consequence. h

It can be observed from Proposition 1 that
bTðsÞ ¼ EZ½b̂ZTðsÞ� is a monotonically increasing func-
tion of the order-up-to level s. In other words, we
know the range and the search direction of the opti-
mal order-up-to level s�. Based on the theoretical
development established above, we develop a bisec-
tion method based on Monte Carlo simulation, to find
the optimal order-up-to level s in the following Algo-
rithm. The algorithm starts by finding an upper
bound su through repeated doubling until a value is
found such that the expected fill rate is larger than
that specified. A lower bound sl is similarly obtained
by repeated shrinkage. The algorithm then repeatedly
divides and updates the interval [sl, su], selecting the
subinterval containing the optimal value. Monotonic-
ity of bT(s) guarantees the uniqueness of the solution
and its global optimality.

To start the bisection method, we must find the
appropriate lower bound and upper bound for choos-
ing the initial point. A naive method is to set zero as
lower bound and a sufficiently large number as upper
bound. However, setting a fixed initial point does not
take into account the problem context, in particular,
the distribution structure. Thus, it may be inefficient,
due to the wide range of optimal values given
demand distribution parameters. In contrast, our the-
oretical results suggest a better way to initialize the
bisection algorithm. Based on Theorem 3, it is
straightforward to see that the order-up-to level in the
b1,0(s) can be used to provide a lower bound, and we
can use the order-up-to level in the b1;LðsÞ to provide
an upper bound. Due to the page limit, we discuss the
simulation results and running time with various
kinds of initialization in the appendix. Essentially, we
find that the computation time of our algorithm is
greatly reduced by adopting the initialization
informed by our theoretical analysis.

5. Numerical Results

In this section, we illustrate and discuss the outcomes
of the algorithm described in the previous section and
compare the order-up-to level, s, of the proposed
algorithm to that given by the traditional formula. All
models and algorithms in this section are imple-
mented in MATLAB R2015b, on a Thinkpad worksta-
tion with Intel Xeon E3-1505M CPU 2.80 GHz and
16GB of memory.
In the numerical experiments, we illustrate multiple

demand distributions with different parameter set-
tings. For expositional purposes, we report the results
from the Erlang distribution and leave the results of
other distributions in the appendix as the insights are
qualitatively similar across different distributions.
Specifically, we choose Erlang (3,1) as the demand
distribution, vary the lead time L from 0 to 3, the tar-
get fill rate from 75% to 95%, and the performance
review horizon from T = 10 to T = 60. We also report
the order-up-to level from the traditional procedure
for comparison. The results are summarized in Tables
2 and 3 at the end of this document, where Table 2
shows the results from the initial state and the Table 3
illustrates the results from the steady state. We sum-
marize several important observations from the
numerical experimental results below.
One interesting observation is that the inventory

savings are smaller when the steady-state definition
of fill rate is used, as opposed to the initial state defi-
nition. That is to say that the traditional method per-
forms much better under the steady state than the
initial state fill rate. This finding may be explained as
follows. It is clear that the traditional procedure is
exactly correct when the horizon length is infinite and
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the initial on-hand inventory distribution follows the
steady-state on-hand inventory distribution. The ini-
tial state fill rate formulation differs from this set-up
in the following two respects: The initial on-hand
inventory distribution is not the steady-state distribu-
tion, and the horizon length is finite rather than infi-
nite. On the other hand, the steady-state fill rate
formulation differs from the set-up that would make
the traditional formulation exact in one respect rather
than two: the horizon length is finite rather than

infinite. Therefore, one would expect the steady-state
fill rate formulation to result in a smaller discrepancy
than the initial state fill rate formulation. This is pre-
cisely what we observe in all of our numerical obser-
vations, for a range of demand distributions and
parameter settings. From a practical perspective, the
above observation suggests that the inventory man-
ager should be more cautious regarding the over-
stocking issue if the product is relatively new, or in
the case of a newly signed contract in which the

Table 2 The Comparison of Order-up-to Level between Traditional Formula and Proposed Algorithm for Initial State with Erlang (3,1)

Lead
time

Target
fill rate

Performance review horizon

∞ 10 20 30 40 50 60

L = 0 75% 2.824 2.735 (3.17%) 2.779 (1.61%) 2.794 (1.07%) 2.802 (0.78%) 2.806 (0.63%) 2.809 (0.54%)
80% 3.179 3.079 (3.15%) 3.127 (1.61%) 3.145 (1.07%) 3.154 (0.78%) 3.159 (0.63%) 3.162 (0.54%)
85% 3.619 3.506 (3.12%) 3.561 (1.61%) 3.580 (1.07%) 3.591 (0.78%) 3.596 (0.63%) 3.600 (0.54%)
90% 4.215 4.086 (3.08%) 4.149 (1.56%) 4.170 (1.07%) 4.182 (0.78%) 4.189 (0.63%) 4.193 (0.54%)
95% 5.186 5.024 (3.13%) 5.105 (1.56%) 5.131 (1.07%) 5.146 (0.78%) 5.151 (0.68%) 5.156 (0.59%)

L = 1 75% 6.364 5.960 (6.35%) 6.160 (3.20%) 6.227 (2.15%) 6.263 (1.59%) 6.283 (1.27%) 6.295 (1.07%)
80% 6.841 6.430 (6.01%) 6.634 (3.03%) 6.702 (2.03%) 6.739 (1.49%) 6.759 (1.20%) 6.770 (1.03%)
85% 7.423 7.004 (5.64%) 7.209 (2.88%) 7.282 (1.90%) 7.318 (1.42%) 7.340 (1.12%) 7.350 (0.98%)
90% 8.196 7.764 (5.27%) 7.976 (2.69%) 8.048 (1.81%) 8.088 (1.32%) 8.108 (1.07%) 8.124 (0.88%)
95% 9.426 8.970 (4.83%) 9.191 (2.49%) 9.270 (1.66%) 9.311 (1.22%) 9.334 (0.98%) 9.348 (0.83%)

L = 2 75% 9.757 8.924 (8.53%) 9.347 (4.20%) 9.485 (2.78%) 9.557 (2.05%) 9.596 (1.65%) 9.621 (1.39%)
80% 10.328 9.506 (7.96%) 9.922 (3.93%) 10.058 (2.61%) 10.129 (1.93%) 10.169 (1.54%) 10.194 (1.29%)
85% 11.019 10.204 (7.40%) 10.616 (3.66%) 10.750 (2.44%) 10.820 (1.81%) 10.861 (1.44%) 10.885 (1.22%)
90% 11.929 11.120 (6.79%) 11.522 (3.42%) 11.661 (2.25%) 11.731 (1.66%) 11.772 (1.32%) 11.795 (1.12%)
95% 13.360 12.545 (6.10%) 12.949 (3.08%) 13.086 (2.05%) 13.158 (1.51%) 13.197 (1.22%) 13.223 (1.03%)

L = 3 75% 13.082 11.701 (10.56%) 12.426 (5.02%) 12.651 (3.30%) 12.764 (2.43%) 12.828 (1.94%) 12.870 (1.62%)
80% 13.733 12.390 (9.78%) 13.092 (4.66%) 13.310 (3.08%) 13.421 (2.27%) 13.485 (1.81%) 13.525 (1.51%)
85% 14.516 13.208 (9.01%) 13.885 (4.35%) 14.102 (2.86%) 14.208 (2.12%) 14.272 (1.68%) 14.311 (1.42%)
90% 15.541 14.266 (8.20%) 14.919 (4.00%) 15.131 (2.64%) 15.238 (1.95%) 15.298 (1.56%) 15.336 (1.32%)
95% 17.142 15.895 (7.28%) 16.522 (3.61%) 16.740 (2.34%) 16.840 (1.76%) 16.899 (1.42%) 16.941 (1.17%)

Table 3 The Comparison of Order-up-to Level between Traditional Formula and Proposed Algorithm for Steady State with Erlang (3,1)

Lead
time

Target
fill rate

Performance review horizon

∞ 10 20 30 40 50 60

L = 0 75% 2.824 2.735 (3.17%) 2.779 (1.61%) 2.794 (1.07%) 2.802 (0.78%) 2.806 (0.63%) 2.809 (0.54%)
80% 3.179 3.079 (3.15%) 3.127 (1.61%) 3.145 (1.07%) 3.154 (0.78%) 3.159 (0.63%) 3.162 (0.54%)
85% 3.619 3.506 (3.12%) 3.561 (1.61%) 3.580 (1.07%) 3.591 (0.78%) 3.596 (0.63%) 3.600 (0.54%)
90% 4.215 4.086 (3.08%) 4.149 (1.56%) 4.170 (1.07%) 4.182 (0.78%) 4.189 (0.63%) 4.193 (0.54%)
95% 5.186 5.024 (3.13%) 5.105 (1.56%) 5.131 (1.07%) 5.146 (0.78%) 5.151 (0.68%) 5.156 (0.59%)

L = 1 75% 6.364 6.177 (2.93%) 6.264 (1.56%) 6.297 (1.05%) 6.314 (0.78%) 6.323 (0.63%) 6.330 (0.54%)
80% 6.841 6.642 (2.91%) 6.734 (1.56%) 6.769 (1.05%) 6.787 (0.78%) 6.797 (0.63%) 6.804 (0.54%)
85% 7.423 7.207 (2.91%) 7.307 (1.56%) 7.345 (1.05%) 7.365 (0.78%) 7.376 (0.63%) 7.383 (0.54%)
90% 8.196 7.960 (2.88%) 8.068 (1.56%) 8.112 (1.03%) 8.132 (0.78%) 8.144 (0.63%) 8.152 (0.54%)
95% 9.426 9.159 (2.83%) 9.279 (1.56%) 9.329 (1.03%) 9.352 (0.78%) 9.371 (0.59%) 9.375 (0.54%)

L = 2 75% 9.757 9.485 (2.78%) 9.607 (1.54%) 9.656 (1.04%) 9.681 (0.78%) 9.695 (0.63%) 9.705 (0.54%)
80% 10.328 10.043 (2.76%) 10.169 (1.54%) 10.222 (1.03%) 10.247 (0.78%) 10.262 (0.63%) 10.273 (0.54%)
85% 11.019 10.718 (2.73%) 10.850 (1.54%) 10.906 (1.03%) 10.933 (0.78%) 10.949 (0.63%) 10.960 (0.54%)
90% 11.929 11.603 (2.73%) 11.749 (1.51%) 11.807 (1.03%) 11.836 (0.78%) 11.854 (0.63%) 11.865 (0.54%)
95% 13.360 13.001 (2.69%) 13.158 (1.51%) 13.223 (1.03%) 13.256 (0.78%) 13.275 (0.63%) 13.289 (0.54%)

L = 3 75% 13.082 12.742 (2.60%) 12.889 (1.48%) 12.951 (1.00%) 12.983 (0.76%) 13.001 (0.62%) 13.012 (0.54%)
80% 13.733 13.379 (2.58%) 13.530 (1.48%) 13.594 (1.01%) 13.629 (0.76%) 13.646 (0.63%) 13.659 (0.54%)
85% 14.516 14.148 (2.54%) 14.300 (1.49%) 14.371 (1.00%) 14.406 (0.76%) 14.424 (0.63%) 14.438 (0.54%)
90% 15.541 15.150 (2.51%) 15.310 (1.49%) 15.382 (1.03%) 15.420 (0.78%) 15.442 (0.63%) 15.458 (0.54%)
95% 17.142 16.715 (2.49%) 16.891 (1.46%) 16.974 (0.98%) 17.008 (0.78%) 17.033 (0.63%) 17.050 (0.54%)
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inventory system starts at the order-up-to level when
they face a fill rate contract.
Next we observe that the order-up-to level required

to deliver a given target expected fill rate is less than
the order-up-to level derived using the traditional
formula. It is worth noting that each unit decrease in
order-up-to level translates into a unit decrease in average
inventory level. This difference is most acute—and the
savings in average inventory cost most significant—
with long lead times and short planning horizons. For
example, using initial state average fill rate,

• When the lead time is three periods, the plan-
ning horizon is 10 weeks, and the target fill rate
is 75% to 80%, our algorithm results in an aver-
age savings in inventory cost of around 8%.

• When the target fill rate is 90%, the average
inventory cost saving is 6%.

When the lead time is short and/or the review
horizon is long, the difference is less pronounced.
The difference also declines as the target fill rate
increases. To explain this, we note again that the ini-
tial state fill rate formulation differs from the set-up
that would make the traditional formulation exact in
two ways: The initial on-hand inventory distribution
is not the steady-state distribution, and the horizon
length is finite rather than infinite. Therefore, the
longer the horizon, the closer the model gets to an
infinite horizon model, and the smaller is the dis-
crepancy between an infinite horizon model and the
finite horizon model. For a fixed horizon length, the
longer the lead time, the greater the number of peri-
ods required to attain the steady-state distribution of
initial inventory at the start of a period. Hence the
greater the lead time, the greater the discrepancy
between the exact finite horizon model and the infi-
nite horizon approximation.
It is clear, then, that our algorithm can deliver sig-

nificant inventory cost savings to firms that operate a
base-stock policy in a supply chain characterized by
significant lead times, uncertain demand, and differ-
ent demand conditions from one selling season to
another, as is the case with fashion goods when pro-
duction is offshore. We further illustrate the robust-
ness of our finding when incorporating the penalty
for not meeting the contractual fill rate in the next
section.

6. Extensions

In this section, we extend our basic setting by consid-
ering a SLA with penalties and an alternative stochas-
tic algorithm. The first extension illustrates that our
result is robust even with conservative behavior,
while the second extension shows how to improve
the efficiency of the algorithm.

6.1. Service Level Agreement with Penalty
An SLA is a widely adopted form of performance-
based contract in operation management practice.
One feature of this contract is that the supplier may
suffer a penalty for not meeting the specified target fill
rate. In practice, the penalty for failing to meet a target
might be a specific financial penalty and/or loss of
goodwill. But since it is hard to quantify goodwill
costs, we focus on a model with a financial penalty.
There are two common forms of financial penalty:
lump-sum penalty and proportional penalty. As
pointed out by Liang and Atkins (2013), both the pro-
portional and the lump-sum penalty SLA can induce
first-best investment if the supplier adopts a static
policy. Hence, without loss of generality, we assume a
proportional SLA where the supplier incurs a penalty
proportional to the deviation from the contracted tar-
get fill rate.
The proportional form of the penalty implies that

the supplier facing the SLA may be interested in a
particular probability of meeting the target service
level with a specific quantity of stock, rather than
targeting the expected fill rate per se (Thomas 2005).
The unit understocking penalty and unit overstock-
ing cost in the SLA model are equivalent to the unit
underage cost and unit overage cost, respectively, in
the newsvendor model; the supplier needs to balance
these two costs by choosing the appropriate proba-
bility of meeting the performance threshold. The
novelty here—compared with the standard newsven-
dor model—is that the underlying distribution from
which the supplier needs to choose the critical per-
centile is the fill-rate distribution rather than the
demand distribution (recall that fill rate is a random
variable under a finite performance review horizon).
Once the critical percentile is chosen, the correspond-
ing stock level is induced by the demand distribu-
tion. The calculation of the critical stock level is
difficult to do explicitly via a formula because we
are in a multiple period setting with positive lead
time.
Define g� to be the probability that the service level

target will be met based on demand distribution D,
and let ĝTðsÞ denote its approximation using empirical

samples ZN, namely ĝTðsÞ ¼ 1
NRN

n¼11b̂ðnÞ
T

ðsÞ � b
. We note

that the optimal level of g� is determined by the famil-
iar newsvendor model.

g� ¼ PZ	Dðb̂TðsÞ� bÞ ð20Þ

ĝTðsÞ ¼ PZ	ZN ðb̂ZTðsÞ� bÞ ð21Þ
The corresponding inventory problem is as follows:

s� ¼ argminsĝTðsÞ� g� ð22Þ
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We solve this problem using Algorithm K in the
Online Appendix. The line search scheme is similar to
the base algorithm described above. The major differ-
ence is an additional step to search for the lower and
upper bound of optimal order-up-to level, because
expected fill rate on infinite horizon b1ðsÞ may not
satisfy the probability constraint. The numerical
results are summarized in Table 4 at the end of this
document.
From Table 4, we observe that if the penalty fee

(unit understocking cost) and inventory holding cost
(unit overstocking cost) are comparable in magnitude,
then the traditional formula will create significant
overstocks in the inventory system. On the other
hand, if the supplier faces a very high penalty, then
the results from the traditional formula may lead to
under-stocking. From a practical perspective, this
result is consistent with our intuition that inventory
managers tend to over stock expensive products for
fear of violating the contractual service agreement.
Nevertheless, we demonstrate that this conservative
behavior will hurt the firm’s performance under a
wide range of parameters.

6.2. A Stochastic Algorithm For Fast
Approximation
In the previous section, we propose a bisection
method to find optimal order-up-to level. Although

this method can provide a very accurate solution to
the inventory problem, it may have some disadvan-
tage in practice. Most importantly, the solution
quality of this approach hinges on the scale of simu-
lated samples, and it often needs to simulate a large
set of samples to guarantee good solution quality.
To obtain an accurate solution, the demand of com-
putational resources poses a prohibitive challenge
for inventory managers when a large number of
inventory queries have to be processed in parallel
on time. The purpose of this subsection is to
describe a more efficient algorithm that exhibits a
greatly improved performance to obtain the optimal
order-up-to level.
Fill rate, as we proved earlier, is a monotonically

non-decreasing function of order-up-to level s. As we
demonstrate in this section, this allows us to improve
the efficiency of the previously described bisection
based root finding procedure. Under the framework
of stochastic approximation (SA) by Robbins and
Monro (1951), we describe the proposed stochastic
algorithm for searching optimal order-up-to level in
Algorithm 4. For the sake of simplicity, we leave the
algorithm details in the Online Appendix but briefly
describe its main idea. This new procedure applies a
difference equation based on a dynamical system that
relies on as few as a single sample to seek the optimal
solution. Let b be the target fill rate, SA iteratively

Table 4 The Comparison of Order-up-to Level between Traditional Formula and Penalty Model for Initial State with Erlang (3,1)

Critical
ratio Fill rate

Traditional
formula

Review horizon

T = 10 T = 30 T = 50 T = 70 T = 100 T = 180

0.40 75% 6.36 5.61 (11.85%) 6.02 (5.33%) 6.12 (3.75%) 6.17 (3.00%) 6.21 (2.37%) 6.26 (1.64%)
80% 6.84 6.00 (12.33%) 6.46 (5.57%) 6.57 (3.92%) 6.63 (3.13%) 6.67 (2.49%) 6.72 (1.71%)
85% 7.42 6.44 (13.31%) 6.98 (5.96%) 7.11 (4.20%) 7.17 (3.37%) 7.23 (2.66%) 7.29 (1.83%)
90% 8.20 6.95 (15.17%) 7.65 (6.72%) 7.81 (4.71%) 7.89 (3.76%) 7.95 (2.97%) 8.03 (2.04%)
95% 9.43 7.64 (18.91%) 8.61 (8.62%) 8.86 (5.96%) 8.98 (4.74%) 9.08 (3.72%) 9.19 (2.53%)

0.45 75% 6.36 5.76 (9.46%) 6.12 (3.84%) 6.20 (2.58%) 6.24 (2.00%) 6.27 (1.54%) 6.30 (1.01%)
80% 6.84 6.16 (9.90%) 6.56 (4.03%) 6.66 (2.71%) 6.70 (2.11%) 6.73 (1.62%) 6.77 (1.06%)
85% 7.42 6.62 (10.83%) 7.10 (4.38%) 7.20 (2.94%) 7.25 (2.28%) 7.29 (1.75%) 7.34 (1.14%)
90% 8.20 7.16 (12.68%) 7.78 (5.04%) 7.92 (3.37%) 7.98 (2.61%) 8.03 (1.99%) 8.09 (1.29%)
95% 9.43 7.87 (16.47%) 8.78 (6.81%) 9.01 (4.46%) 9.10 (3.43%) 9.18 (2.60%) 9.27 (1.68%)

0.50 75% 6.36 5.92 (7.02%) 6.21 (2.35%) 6.27 (1.42%) 6.30 (1.02%) 6.32 (0.71%) 6.34 (0.39%)
80% 6.84 6.33 (7.43%) 6.67 (2.50%) 6.74 (1.50%) 6.77 (1.08%) 6.79 (0.76%) 6.81 (0.42%)
85% 7.42 6.80 (8.33%) 7.22 (2.78%) 7.30 (1.67%) 7.33 (1.20%) 7.36 (0.85%) 7.39 (0.46%)
90% 8.20 7.36 (10.16%) 7.92 (3.34%) 8.03 (2.01%) 8.08 (1.44%) 8.11 (1.01%) 8.15 (0.56%)
95% 9.43 8.11 (13.96%) 8.96 (4.93%) 9.15 (2.94%) 9.23 (2.11%) 9.29 (1.48%) 9.35 (0.83%)

0.55 75% 6.36 6.07 (4.54%) 6.31 (0.84%) 6.35 (0.24%) 6.36 (0.02%) 6.37 (�0.12%) 6.38 (�0.23%)
80% 6.84 6.51 (4.87%) 6.78 (0.95%) 6.82 (0.29%) 6.84 (0.04%) 6.85 (�0.11%) 6.86 (�0.23%)
85% 7.42 7.00 (5.71%) 7.34 (1.16%) 7.39 (0.39%) 7.41 (0.11%) 7.43 (�0.07%) 7.44 (�0.22%)
90% 8.20 7.58 (7.53%) 8.07 (1.59%) 8.14 (0.64%) 8.17 (0.26%) 8.19 (0.02%) 8.21(�0.18%)
95% 9.43 8.35 (11.39%) 9.14 (3.03%) 9.30 (1.37%) 9.35 (0.76%) 9.39 (0.34%) 9.43 (�0.03%)

0.60 75% 6.36 6.24 (1.97%) 6.41 (�0.71%) 6.43 (�0.98%) 6.43 (�1.01%) 6.43 (�0.98%) 6.42 (�0.88%)
80% 6.84 6.69 (2.23%) 6.89 (�0.66%) 6.91 (�0.98%) 6.91 (�1.03%) 6.91 (�1.00%) 6.90 (�0.90%)
85% 7.42 7.20 (3.00%) 7.46 (�0.54%) 7.49 (�0.94%) 7.50 (�1.02%) 7.50 (�1.01%) 7.49 (�0.92%)
90% 8.20 7.80 (4.80%) 8.21 (�0.21%) 8.26 (�0.81%) 8.27 (�0.96%) 8.28 (�1.00%) 8.27 (�0.95%)
95% 9.43 8.61 (8.69%) 9.33 (1.01%) 9.45 (�0.27%) 9.49 (�0.66%) 9.51 (�0.84%) 9.51 (�0.93%)
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generates a solution sequence {s1, s2, . . ., sn, . . .} as
follows:

sn ¼ sn�1 þ gn b� b̂ðnÞT

� �
;

where b̂ðnÞT is the empirical fill rate on the n-th sample
and the scalar gn is used to control the moving step
size. We have a few comments regarding the pro-
posed algorithm. Firstly, stochastic approximation
has a significantly faster iteration when only single
sample is simulated for computing b̂ðnÞT . On the other
hand, the bisection method requires all the samples
to update lower or upper bound, and hence will be
much slower than SA. Secondly, SA iterates in a non-
monotone way, and the update direction is not
always towards the optimal order-up-to level because
of large variance in b̂ðnÞT ; SA requires many more

iterations to ensure convergence in the long run.
Based on the theory in Robbins and Monro (1951), we
can employ a decaying step size to achieve asymp-
totic convergence to the optimal order-up-to level.
We now demonstrate the efficiency of stochastic

approximation through numerical experiments. We
first compare the convergence of the stochastic approx-
imation method with the bisection method. In the fol-
lowing experiments, we set the parameters T = 50
(horizon length) and L = 3 (lead time). We first drew
107 samples, each of which was a vector in RT with
coordinates generated independently from a Erlang
distribution, Erlang (c, k) with fixed rate k = 1, and
varying shapes c = 1, 3, 5, 7. Simulations were then
run using these samples. The step size gn was chosen
to be the function gn ¼ a

aþnj , where a = 100 and j = 1.
Figure 3 illustrates the obtained order-up-to level with
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Figure 3 Illustration of Convergence Comparison between Bisection and Stochastic Approximation Algorithm [Color figure can be viewed at
wileyonlinelibrary.com]

Notes. The red/blue curves represent the convergence of the stock levels over the algorithm running time, for the stochastic approximation/bisection
method, respectively. Demand sequence is generated from Erlang(c, 1) with shape c = 1, 3, 5, 7. The target fill rate is b = 0.9 with L = 3, and review
horizon T = 50.
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respect to the logarithm of the running time in seconds,
for both approaches. Wemake a few observations. First
of all, SA is non-monotone and fluctuating due to the
stochastic noise, but it immediately (in less than 0.5 s)
moves to a steady phase where the sequence is con-
verging to the optimal order-up-to level. Secondly, we
observe that the stochastic algorithm converges to the
optimum fairly quickly; it is able to reach close enough
to the optimum without even using all the simulated
data, at a point when the bisection method has not yet
finished one iteration.
Next, we investigate the time cost of stochastic

approximation as opposed to the bisection method on
simulated data with combination of following param-
eters: c = 1, 3, 5, 7, T = 20, 40, 60, and L = 0, 1, 2, 3.
The experimental results are presented in Table 5. We
let the bisection method run until the change was less
than 0.005 and the stochastic algorithm terminates
after one-pass of the simulated data. We observe that
the mean value of the order-up-to levels obtained
from the stochastic approximation is very close to the
bisection method, with a difference of less than

0.005. On the other hand, while preserving solution
quality, the stochastic algorithm obtains much faster
empirical convergence with up to 79 speed-up com-
pared to the bisection method.

7. Conclusions

Our study was motivated by observing the discrep-
ancy between the traditional fill rate formula, which
applies only in an infinite horizon model, and the
finite-horizon service-level agreements that are

implemented in practice. We find that under certain
circumstances (e.g., high lead time relative to the
length of the planning horizon, variations in demand
conditions or product features from one SLA to the
next) this discrepancy can have a significant impact
on achieved fill rate over a finite performance review
horizon. It is very important to note that imposing a
finite-horizon, service level contract will inflate the
achieved expected fill rate to a level well above the
contractually specified target, which results in sub-
stantially higher inventory related costs. For instance,
current commercial software suggests that the inven-
tory manager needs to set the stocking levels at
11.52% higher than the optimal level when the perfor-
mances review horizon T = 10 and lead time L = 1
with a initial state initial inventory. The potential sav-
ings from lowering inventory levels, when aggre-
gated over a year, are substantial and can have a
direct impact on a firm’s balance sheet.
We briefly point out a few limitations and sketch

some ideas for future research. To begin with, our
model assumes that a manager faces an objective
function for which the optimal solution is to select the
minimum stock level that ensures that a contracted fill
rate, to be measured over a finite horizon with i.i.d.
demands from period to period, is met on average
over the horizon. The practical significance of our
modeling approach and solution is critically tied to
the assumption that the operations manager is willing
and able to use simulation-based optimization; this
assumption underpins the algorithmic section of our
paper. An extension of our research might consider a
different objective function that includes expected

Table 5 Efficiency Comparison between Bisection Method (BM) and Stochastic Approximation Algorithms (SA)

Lead
time

Erlang
shape

Traditional
formula

T = 20 T = 40 T = 60

BM SA BM SA BM SA

s Time s Time s Time s Time s Time s Time

L = 0 c = 1 2.303 2.191 4.423 2.197 2.022 2.249 7.479 2.245 3.877 2.263 11.522 2.265 5.725
c = 3 4.215 4.146 4.795 4.145 1.974 4.179 8.616 4.180 3.753 4.192 11.919 4.192 5.743
c = 5 6.064 6.003 5.086 6.003 2.198 6.031 8.424 6.034 3.756 6.041 13.013 6.045 5.513
c = 7 7.887 7.834 5.562 7.832 2.175 7.859 9.925 7.860 3.733 7.865 13.614 7.867 5.506

L = 1 c = 1 3.890 3.662 6.262 3.663 2.027 3.771 11.045 3.771 3.876 3.808 17.771 3.812 5.725
c = 3 8.196 7.975 7.471 7.977 1.967 8.084 14.329 8.084 3.756 8.122 19.635 8.120 5.546
c = 5 12.236 12.002 7.202 12.002 2.201 12.116 14.070 12.116 3.772 12.155 20.026 12.155 5.670
c = 7 16.180 15.924 8.051 15.929 1.964 16.056 14.885 16.055 3.735 16.094 22.228 16.095 5.503

L = 2 c = 1 5.322 4.960 7.599 4.962 2.027 5.135 15.614 5.139 4.055 5.193 22.187 5.197 5.727
c = 3 11.929 11.524 8.719 11.526 1.967 11.729 16.462 11.729 3.757 11.794 24.369 11.796 5.530
c = 5 18.146 17.689 9.786 17.690 1.961 17.923 18.426 17.923 3.735 18.001 27.440 17.998 5.519
c = 7 24.216 23.710 9.383 23.710 1.960 23.965 18.378 23.975 3.727 24.051 27.356 24.053 5.598

L = 3 c = 1 6.681 6.172 10.356 6.168 2.029 6.423 19.744 6.415 3.885 6.506 29.362 6.500 5.748
c = 3 15.541 14.919 11.492 14.924 1.973 15.234 22.608 15.234 3.948 15.338 31.857 15.339 5.693
c = 5 23.916 23.201 11.170 23.206 1.961 23.565 22.859 23.574 3.741 23.687 32.168 23.686 5.709
c = 7 32.103 31.297 12.286 31.302 2.138 31.717 24.379 31.712 3.746 31.843 34.458 31.850 5.734

Notes: “s” denotes the order-up-to level, and “Time” denotes the computation time in seconds. For each method 107 simulated data are generated from
Erlang(c, 1) with shape c = 1, 3, 5, 7. The target fill rate is b = 0.90.
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holding costs, expected backorder costs, and the
expected cost of not meeting the fill-rate stipulated by
the SLA over a finite horizon. We analyze the above
stated components of the objective function sepa-
rately, but not all together in a single objective func-
tion. Second, SLAs are widely applied in many
different contexts. We focus on their application in
inventory management systems. Future research
could expand the current idea to investigate other set-
tings. For example, the staffing decisions in a Call
Center where SLA is also commonly implemented
(Xia et al. 2015). Third, we restrict the inventory pol-
icy to a base stock policy. It is worthwhile to explore
whether a similar overstocking problem will occur
with other inventory policies (e.g., (R, Q) policy).
Notwithstanding these limitations, this study closes a
significant gap in the literature by investigating the
role of positive lead time and provides a solution to
the problem. We believe that the current research is
also relevant to the practice in the sense that our
results can be integrated into commercial software
and generates tremendous savings for managers fac-
ing the SLAs.
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Notes

1Most recent statistics are available at https://www.cen
sus.gov/mtis/index.html.
2For example, the SAS Inventory Replenishment Planning
9.1 Users Guide provides the detailed formula used in the
software, which can be retrieved at http://support.sas.
com/documentation/onlinedoc/91pdf/sasdoc_91/inven
tory_ ug_7307.pdf.
3We thank the one anonymous Reviewer and Senior Edi-
tor for suggesting that we consider the initial on-hand
inventory starting from the steady state.
4Note that there is an inconsistency between Equation (4)
above and Equation (6) in Sobel (2004). Essentially, there
was a typographic error in the subscript of the summation
in Sobel (2004), where one should have summed from
Lc + 1 instead of Lc + 2.
5We thank the one anonymous Reviewer and Senior Edi-
tor for suggesting this. Due to the page limit, we have
attached the results when the initial on-hand inventory
equals to the order-up-to level for Normal and Poisson

distributed demands in the appendix. Additional results
are available based upon requests to the authors.
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